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Some Properties of Sequential Predictors 
for Binary Markov Sources 
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Abstract-Universal prediction of the next outcome of a binary 
sequence drawn from a Markov source with unknown parameters 
is considered. For a given source, the predictability is defined 
as the least attainable expected fraction of prediction errors. 
A lower bound is derived on the maximum rate at which the 
predictability is asymptotically approached uniformly over all 
sources in the Markov class. This bound is achieved by a simple 
mqjority predictor. For Bernoulli sources, bounds on the large 
deviations performance are investigated. A lower bound is de- 
rived for the probability that the fraction of errors will exceed 
the predictability by a prescribed amount A > 0. This bound is 
achieved by the same predictor if A is sufficiently small. 

Index Terms- Predictability, universal prediction, Bernoulli 
processes, Markov sources, large deviations. 

I. INTRODUCTION 

N [l], universal finite-state (FS) predictors have been I sought that minimize the asymptotic fraction of errors for 
an individual binary sequence. It has been shown in [ l ]  that 
the best prediction performance is asymptotically attained by a 
(randomized) Markov predictor with a slowly growing order, 
i.e., a predictor based on current estimates of the conditional 
probabilities of the next outcome given the k preceding 
bits, where the order k increases gradually with time. A 
predictor based on the Lempel-Ziv (LZ) algorithm [2] has 
been demonstrated in [l] to be such a growing-order Markov 
predictor and hence to attain asymptotically the least possible 
fraction of errors made by any FS predictor, that is, the FS 
predictability [ 13. Independently, in [3] a similar predictor 
(though nonrandomized) has been proposed with application 
to prefetching memory pages in computers, where the page 
sequence is modeled as being governed by a probabilistic 
unifilar FS source. It has been shown in [3] that the resulting 
expected fraction of errors (page faults) converges to the 
optimum. However, if the source is known to have no more 
than S states, then the LZ algorithm, which does not utilize this 
prior information, might yield a relatively slow convergence. 
A natural question that arises and that we shall be concerned 
with, is: how fast can the optimum performance of approached 
when the predictor knows the class of sources but not the 
parameter value? 
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In [4], a similar question has been addressed in the 
context of predicting Gaussian autoregressive moving average 
(ARMA) processes under the minimum-mean-square-error 
(mmse) criterion. It has been shown in [4] that no predictor 
exists that approaches the asymptotic mmse faster than 
n-l log n, n being the sample size, for all ARMA processes 
except for a collection of ARMA processes corresponding to a 
subset of parameter values whose volume is vanishingly small. 
This argument was based on an analogous result in universal 
data compression (proved in [4] as well), which rules out the 
existence of a lossless code whose compression ratio converges 
to the entropy faster than n-l log n for a considerably large 
subset of parameter values. Note that an exception of a small 
subset of parameter values is necessary if every scheme is 
allowed, including the optimal scheme for a specific parameter 
value. 

In this paper, an attempt is made to investigate, in the 
same spirit, fundamental limitations in universal prediction 
of finite-alphabet Markov sources, and in particular, binary 
Markov sources. We derive a lower bound on the rate at 
which the optimum prediction performance can be uniformly 
approached by any sequential predictor when the underlying 
Markovian source is known to be of order k, but otherwise 
unknown. However, in contrast to [4], here one cannot expect 
a nontrivial lower bound that holds simultaneously for most 
sources in the class. Consider, for example, a Bernoulli source 
parametrized by 6’ = Pr {xt = l} = 1 - Pr {xt = 0). Here, 
predicting constantly “0” is a uniformly optimal strategy for 
every 0 5 6’ 5 1/2, namely, for “half” of the sources in the 
class there cannot be a lower bound on the rate of approaching 
optimality. Thus, the bound here will hold for only half of the 
sources. In the Markovian case, the bound will still hold for a 
“considerably large” portion of the parameter space, i.e., for a 
fixed fraction of its volume. In either case, the corresponding 
bound is attained by a simple predictor based on a majority 
count. 

Finally, we examine the achievable large deviations perfor- 
mance for Bernoulli sources under the criterion of minimizing 
the probability that the fraction of errors would exceed the op- 
timum by a prescribed amount A. We derive an exponentially 
tight lower bound and show that it is uniformly attained by 
the majority predictor in some range 0 < A 5 As, but not 
for A > A,. 

11. A LOWER BOUND ON THE EXPECTED FRACTION OF ERRORS 
We start with Bernoulli sources and later extend our dis- 

cussion to Markov sources. Let 21, 22,-+.,2,, xt E (0, l}, 
1 
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denote a binary n-tuple drawn from a Bernoulli source pa- 
rametrized by 8 = P r  {xt = l}. A predictor is a sequence 
of functions f = (fo, fl,. . .), ft: (0, l}t + (0, l}, where 
at time t ,  the next outcome xt+l is estimated by Ot+l = 

1(.} denotes the indicator function of an event). We are 
interested in minimizing re (f) = lim sup,,, E0ne( f ) /n ,  
where Ee denotes expectation w.r.t 8. The predictability, 
defined as = inff7re(f), is obviously attained by the 
predictor &+I = 0 if 8 5 1/2 and &+I = 1 if 8 > 1/2. 
Hence, re = min(8, e}, where 5 denotes 1 - a. 

If 8 is not known, then one does not know which one of 
these predictors to use, and therefore 7r0 cannot be attained for 
every n and uniformly for every 8, but only asymptotically. 
We shall be interested in the rate at which 7r0 can be uniformly 
attained when n -+ 03. Intuitively, the predictor 

ft(x1, ~2,...,xt)*  et n e ( f )  4 l(2i.t # x t}  (where 

A 

A 

if i ( t )  < I/Z, 
if i ( t )  = 1/2, 
if B(t) > I/Z, 

= f:(x1,. . . , xt) = flip a fair coin, 

{ 1: (1) 
where 8(t)  = t-lC;=, x, is the current estimate of 
6 (e(0) = 1/2), is in some sense the best one can use when 8 
is unknown. The following theorem consolidates this intuition. 

A 

Theorem 1: 
a) For every predictor f, and every 8 # 1/2 either 

or 

where co(8) = C O @ )  = [2(1 - 27re)l-l. 

b) The predictor f* satisfies both 

and 

Egne(f*) 5 n ~ i j  + C O ( ~ ) .  

Part a) tells us that every predictor must make on the 
average at least co(8) = C O ( $ )  extra prediction errors beyond 
the minimum nre = nrg, for either 8 or e. Part b) implies 
that f* is optimal in the sense of doing no worse for both 
sources. It follows from the simple inequality 0.5Eene(f) + 
0.5Esne(f)  2 0.5Eene(f*)+0.5Een,(f*), which is justified 
below and has been observed independently by Rissanen [5]. 
Thus the convergence rate is O( l /n) .  

In [l], [6]-[8] where prediction of individual sequences is 
considered, the convergence rate to the predictability (defined 
in [ l ]  for the deterministic case) slows down to O ( l / f i ) .  
The reason for the difference is that in the deterministic setup 
of [l], [6]-[8], a uniform upper bound is derived from a worst 
case analysis rather than the expectation over an ensemble of 
sequences. 

Proof of Theorem 1: First we find a tight lower bound on 
M ( f )  6 0.5Eene(f) + 0.5Egne(f) for an arbitrary predictor 
f, and then we argue that this lower bound must hold for 
either Esne( f ) ,  or Egne(f), or both, and hence for at least 
one half of the Bernoulli sources. We show that the tightest 
lower bound is M ( f * )  and hence it remains to evaluate the 
performance of f*. First observe that by (l), Een,(f) = 
Cy=, Po{& # xt}, where PO{.} denotes a probability w.r.t 8. 
Without loss of generality, let 0 < 1/2. Since xt is independent 
of 51, x2,...,xt-1, and hence also of lit, 

Po{& # xt} = Po{& = 0 ) .  Pe{xt = 1) +Po{& = l} 

. Pe{xt = O} 

= 8 .  [l - Po{& = l}] + (1 - 8 ) .  Po{& = I} 
= 8 + (1 - 28) 3 Po{& = l} 

= + (1 - 28) . Pe(2i.t = I}. ( 2 )  

Similarly, Ps{& # xt} = 7rs + (1 - 28) . & { i t  = 0). 
The second term on the right-most side of (2)  describes the 
excess in error probability beyond the predictability incurred 
by using a nonoptimal predictor for 8. Since ?re = rs, the 
minimization of M ( f )  is equivalent to the minimization of 
0.5Pe{& = l} + 0.5Pg{Pt = O } .  This, in turn, can be 
thought of as a binary hypothesis testing problem where one 
seeks a rule f t  for deciding in favor of 8 or $ with priors 
p ( 8 )  = p ( g )  = 1/2, and the goal is to minimize the error prob- 
ability. This is accomplished by comparing the likelihood ratio 
Pe(x1, 5 2 ,  . . . , xt-l)/Pe(xl, 2 2 , .  . . , ~ - 1 )  to unity, which is 
equivalent to f,*-l in (1). Thus the average of Esne(f) and 
Egn, (f) is minimized by f* and either Eon, (f) or Esn, (f) 
is not less than Een,(f*) = Esn,(f*). 

To complete the proof, it remains to prove part b). To 
do this, we evaluate the performance of f* for 8 < 1/2. 
From (2),  Eene(f*) = n?ro + (1 - 28) . Cy=l P,{x,* = l}, 
where the summation on the right-hand side converges to a 
constant A 2 C t 2 , [ P ~ { 6 ( t  - 1) > 1/2} + 0.5Pe{i(t - 
1) = 1/2}], which can be calculated by generating function 
techniques [9, ch. IV, section 171 in the following manner. 
Define yt = 2xt - 1 and a random walk St = Ef=,YZ. 
We wish to calculate A = 0.5 + C,,,[Pe{St > 0 }  + 
0.5P,{St = O}]. Let z = eJw and $ ( z )  = EOZ"~ = 
Bz + 3z-l .  For Irl 5 1 we first factor, in two different ways, 
the function 1 - r$(z )  as a product c ( r ) f + ( r ,  z ) f - ( r ,  z ) ,  
where f+ and f- contain positive and negative powers of 
z ,  respectively. A direct spectral factorization of the second- 
order polynomial in z ,  1 - r$(z) = 1 - r8z - 8 z - l  yields 
~ ( r )  = 0.5(1 + p), f+(~, z )  = 1 - (Zer)-'z(l - p )  and 
f - ( r ,  z )  = 1 - (28rz)-'(l - p)  where p = [l - 488r2]1/2. 
On the other hand, 1 - r$(z )  = exp[log(l - rEez"l)] = 
exp [- t - l ( r E ~ z ~ ~ ) ~ ]  = exp [- T ~ E O Z ~ ~ ] ,  where 
we have used the Taylor expansion of the logarithmic func- 
tion and the fact that [ E O Z ~ ~ ] ~  = EezSt for independent 
copies of Y1. Now, E0zSt is composed from contributions 
of negative and positive powers of z in accordance to the 
sign of S,. Thus, the exponent can be factored as cf+ f- 
where c ( r )  = exp[-Et>l t - l r tPe{St  = O}], f+(r, z )  = 
exp [- Et,, t - ' r tE~(zS t - .  1{St > O } ) ] ,  and f-(r, z )  = 
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(3) 

which yields the desired result and completes the proof of 
Theorem 1. U 

The explicit calculation of ~ ( 0 )  is more involved in the 
Markovian case. An alternative representation of co(0) in 
the Bernoulli case, which will be extended to the Markov 
case, is given by cO(0) = 0.5CE0Pe{0(t) = l/2}. This 
can be shown as an immediate corollary of the following 
lemma (whose proof appears in the appendix), and the fact 
that n-lEe min {n(O), n(1)) converges exponentially to T O .  

Lemma 1: For a Bernoulli source 0, Een,(f*) = 
EO min{n(O), n(1)) + O.SE,gn*, where n(0) and n(1) are 
counts of zeroes and ones, respectively, ̂ along z1, + , 2,  

and n* is the number of times t that e( t )  = 1/2, i.e., 
n* = l{e(t) = 1/2). 

Next, we consider binary Markov sources. For simplicity, 
we shall confine our discussion to the first-order case, but 
the results will generalize straightforwardly to the kth-order 
case. A first-order Markov source is indexed by a vector 
0 = (60, el), where 00 = Pr{zt+l = 1 1 zt = 0) and 
81 = Pr {xt+l = 1 I xt = 1). To guarantee that the source is 
irreducible and aperiodic (see, e.g., [lo]), we shall assume that 
6’ E 0 = {e :  Bo > 0, el < 1, and either Bo < 1 or O1 > 0). 
This ensures the existence of stationary probabilities ,LL~ = 
limt+, Pr {xt = 1) and j i e  = limt,, Pr {xt = 0) and hence 
enables the definition of the predictability re as inffre(f), 
which is attained by &+I = f t (x l , .  . . , z t )  = g(zt), where 
g(z) = l{eE 2 l/2}, z = 0, 1. Consequently, re = 

min (01, $1). For an unknown 8, a 
natural extension of f *  to the Markov case is 

A 

A 

- min {eo, e o }  + 

.;+I = f t*(z1 ,* . . , z t )  
if tz ,( t)  < 1/2, 

if 0,,(t)  > l /2 ,  
= { :k a fair coin, if !,,(t) = 1/2, (4) 

where = nt(x, l ) /n t (z ) ,  z = 0, 1, nt(z, 1) being 
the number of transitions from z, = z to z,+1 = 1, 
T = 0, 1,. a ’ ,  t - 1, and nt(z) = nt(z, 1) + nt(z ,  0) is the 
number of occurrences of the symbol z in 20, 21, .. . , xt--1. 
If nt(z)  = 0, 0,(t)  = 1/2. Define the prediction error 
redundancy of f at 0 as Rn(f ,  0) = n-lEene(f)  - re. For 
a given 0 = (00, el) ,  define the reflection set as G(0) = 
{(BO, el), (eo, $I), ($0, O l ) ,  ($0, 31)). The following is an 
extension of Theorem 1 to the Markovian case. 

* A  

Theorem 2: 
a) For every f ,  any 0 E 0, and all n, there exists at 

least one point 0’ E G(0) such that nR,(f, 0’) 2 
cl(#) - o(1) where ~ ( 6 ’ )  = 0.5 xi=, Pe/{xt = 
z, B,(t) = 1/2}. 

b) The predictor f *  satisfies nRn(f*, e)  5 cl(0) for all 

The theorem tells that the decay rate of Rn( f ,  0) cannot 
be faster than that of f *  at least at one of the four points in 
G(0), for every 0. In other words, Rn(f*,  0) 5 Rn(f, e)  for 
at least a “quarter” of the binary Markov sources. Note that 
this holds for all n. 

Proof of Theorem 2: We prove that R, ( f ,  e’) 2 R, (f’ ,e‘) 
for at least one point 19’ E G(0). The proof of part b) is a 
straightforward extension of the proof of Theorem lb), where 
the expression for c1 (0) is obtained as a simple generalization 
of the expression for co(0). For a given f ,  

0 E 0 and all n. 

Pe{&+i # ~ t + i )  
1 1  

= y p e ( z t  = u)Pe(zt+1 = b(zt = U )  

a=Ob=O - 
. Pe(&+l = blzt+l = b, xt = U )  

@ - x y : P e ( x t  = a)Pe(zt+i = blzt = U )  

1 1  

a=Ob=O 
- 

. P S ( & + l  = blxt = U )  

k’re + (1 - 2 min { ~ o ,  $0)) 

. Pe{zt = 0,&+1 # 1{00 2 1/2)) 
+ (1 - 2 min {$I, e”,)) 
. Pe{zt = 1, &+l # 1{01 2 1/2)} 

(5) 
A 
= re + r t ( f ,  e), 

where equality a) follows from Markovity and the fact that 
&+I depends only on zt ,  ~ - 1 ,  ..., equality b) is obtained 
similarly to (2), and Rn( f ,  e )  = n-l r t ( f ,  e). Clearly, 
min Rn( f ,  0) is obtained by minimizing each term of ~ t ( f ,  0) 
individually. Every predictor f is a pair (go, 91) of sequences 
of prediction functions associated with state xt = 0 and 
zt = 1, respectively. We shall denote r t ( f ,  0) and PO by 
the more detailed notations rt(go, 91, 00, 61) and I‘e,e,{-}, 
respectively. From (5),  

rt(g0, 91, 00, 01) 
= (1 - 2 min{Bo, $ 0 ) )  

. Peoel{zt = (),&+I # 1{& 2 1/2)} 
+ (1 - 2 min{d1,$1}) 

.Peoel{zt = 1, &+i # 1{0i 2 1/21], (6) 

and similarly, 
- 

rt(g0, 91, 00, 01) 
= (1 - 2 min {eo, $0)) 

* PTo611{xt = 0, &+l # 1{00 < 1/2}} 

* PJ0~, {.t = 1, &+l # 1{01 2 W ) } .  

+ (1 - 2 min {el, $1)) 

(7) 

Similar to the hypothesis testing consideration of Theorem 1, 
the average of the first terms on the right-hand side of (6) 
and (7) is minimized if go is replaced by go*, which means 
using (4) when the current state xt is zero. The second term 
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in both (6) and (7), which corresponds to state one, remains 
unaffected. Hence, 

;rt(So, 91, 0 0 ,  01) + ir t (90,  91, $0, 01) 

In the extension of Theorem 2 to kth-order Markov sources 
parametrized by 0 = (00, 01,. . . , 02~-1),  where 

BZ = Pr  {x t  = ll(xt-',. . . , xt-1) = binary expansion of i}, A 

2 $rt(gg*, 91, 00, 01) + irt(gg*, 91, $0, 01). (8) i = o ,  1,.- ,2"1, 

Similarly, G(0) includes all 2' points of the form e"= (BO,  81,. . . , e " 2 ~ - 1 ) ,  
where e, is either 0, or e,. Here, the extension of Theorem 
2a), which describes the behavior of f* for kth-order Markov 
sources, holds for a fraction 2-2k of 0, but the extension of 
(11) holds for a fraction (1 - 2-2k) of 0. 

- 
irt(90, 91, 00, el) + $rt(go, 91, e o ,  $1) 

2 ; T t ( g g * ,  gl, Bo, e,) + iTt(gg*, gl, Bo, el). (9) 

Combining (8) and (9), we get 
1 111. LARGE DEVIATIONS PERFORMANCE 

2 ; [ ; ( T t ( S ; ,  91, 00, 01) + rt(gg*, 91, 0 0 ,  $1)) 

z C 8 / c G ( 8 ) r t ( f ,  
We now return to Bernoulli sources and evaluate the large 

deviations performance of f* ,  i.e., the exponential decay rate 
ofPe{n,(f) > n(.iro+A)} for aprescribeda E (0, l/a-.rro). 
We show that f* attains the optimal error exponent for a 
certain range 0 < A 5 &. However, if a > A8 this is 
no longer true. We first derive an exponentially tight upper 

l h o r e m  3: For every & m ~ ~ u l l i  Source 0 and any Predictor 

+ $(rt(S;, 91,80, 01) + Tt(Sg*, 91 , Jo ,  T1))l 

+ ;(rt(S;, gT, 3 0 ,  01) + Tt(g;, 97, e o ,  ed)l 
L $[;(7-t(gg*, ST, 0 0 ,  61) + rt(gg*, gT, 0 0 , m  

= : C 8 ' E G ( @ ) r t ( f * ,  (10) bound for the error exponent. 

where the second inequality follows from the hypothesis 
testing consideration applied to gT, i.e., the predictor (4) at 
state xt = 1. Taking a time average of r t ( f ,  0') results in 
Rn(f, 0') 2 Rn(f*, 0') for at least one 0' in G(0), completing 

0 

f, 

P8{ne(f) > n<}] 5 D(<ii.ird, 
the proof of Theorem 2. 

One might wonder whether optimality of f * on a quarter of 
0, as was mentioned earlier, is the strongest possible statement 
that can be made when allowing simultaneously both every 0 
and every f .  There seems to be two answers to this question. 

1) Strictly speaking, one answtr is yes since there exists 
a predictor f for which r t ( f ,  0') < r t ( f * ,  0') at three 
points of G(0) for every 0.  Thus the lower bound can 
be violated simultaneously for three quarters of 0. A 
counterexample is a predictor that knows 0 is outside one 
quarter of the parameter space, say, 0 $! Q = (0: 00 > 
1/2, 01 > 1/2}. Such prior information improves the 
prediction performance for every 0 E Q" as shown in 
the appendix. 

2) Theorem 2a) can be modified to hold for at least three 
quarters of 0 at the expense of decreasing q(0 ' ) .  An 
alternative form of Theorem 2a) is the following: For 
every predictor f, every parameter 19, and for at least 
three points 0' in G(I9), 

A 

nRn(f, 0') L W') 
00 

(The proof appears in the Appendix.) This means that 
the lower bound given in the right-hand side of (11) 
holds for three quarters of the binary first-order Markov 
sources. Again, note that this result cannot be strength- 
ened as there exists a predictor that indeed violates (11) 
at one point 0' E 0: the optimal predictor for 0 E G(0), 
which satisfies nR,(f, 0) = 0 simultaneously for all 
sources in the same quarter as 0. 

- where ( 4 + A < 1/2 and D(<ll.rre) A < In (</.e) + 
The bound is exponentially tight because, for 0 5 1/2 and 

f = 0, n,(f) = n(1) and the large deviations behavior of 
n(1) is obviously characterized by D(<ll0). 

Proof of Theorem 3: Define E = {z: min {n(O), n( l )}  2 
n(< + E ) } ,  F = {z: n,(f) 2 min{n(O), n ( l )}  - E } ,  and 
G = {z: n,(f) 2 n<}. Since G 2 E n  F then Pe(G) 2 

n ( l ) / n  5 1-<-~}= exp [ - d ( < + € l l T 8 ) ] ,  where the notation 
a,=b, means that n-l log(a,/b,) -+ 0. The exponent on the 
right-hand side can be made arbitrarily close to D(<ll.rre) by 
choosing E sufficiently small. Thus, to complete the proof it 
suffices to show that Po(F"IE) + 0 as n + CO. To see this, 
divide the space of binary n-tuples into types, where the type 
T, associated with a binary n-tuple z = (XI ,  . . . , z,) is the set 
of all n-sequences with the same composition {n(O), n( l )}  
as that of z. Now 

< 1n(T/.6'). 

P@(EnF) = [ l -Pe (FCIE) ]P~(E) .  NOW P@(E) = P@{<+f 5 

5 (n + 1) . maxP8(FcIT,). (12) 
TZ 

Since all sequences of a given type are equiprobable, we see 
that P@(FcITz) is just the fraction of T,-typical sequences 
with n,(f) < min{n(O), n ( l )}  - ne. We claim that this 
fraction is exponentially small. Indeed, a type T, that cor- 
responds to a composition {n(O) = na, n(1) = nE} contains 
n!/[(na)!(nE')!]=enh(a) sequences where h(a) = -a In Q: - 
Q In E'. Without loss of generality, assume that a 5 1/2 and 
observe that for a given f, the mapping from z to the error 

- 
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sequence e l ,  e2, . , en, (where et = Ixt - &I) is one-to-one. 
The number of error sequences with less than n(a - E )  ones 
(prediction errors) is less than [ l l ,  lemma 2.3.51. 
Thus, the fraction of sequences in FC is exponentially never 
larger than exp{-n[h(a) - h(a - E ) ] } .  ,This completes the 
proof of Theorem 3. 0 

We next present the upper bound associated with f *. 

Theorem 4: For a Bernoulli source 0, and 7r6 < C 5 
(6 A o 3 5 d w ,  

Proof: Again, assume that 0 0 5 1/2 and hence 
= 0. It is shown in the appendix (proof of Lemma 

1) that n,(f*) 5 min{n(O), n( l )}  + n*, where n* = 
l{e(t) = 1/2}. Let Q denote the random variable 

n ( l ) / n  and let Q 2 min {Q, g}. Similarly, let q denote a 
particular value of Q and let 4 = min { q ,  g}. By Lemma 1, the 
large deviation event G* = {z: n,(f*) > n<} is a subset of 
{z: n* 2 na} where a = S-0. For a given q (i.e., for a given 
type Tz), we first upper bound P6{n* > naIQ = q } .  Since 
all q-typical sequences are equiprobable given Q = q, this is 
just the fraction of q-typical sequences for which n* > na .  
Let nt(x), z = 0, 1 denote the count of the symbol z in 
~ 1 ~ ~ ~ 2 ,  . . . , xt. Note that if there are at least na occurrences 
of O(t) = 1/2, i.e., nt(0) = n t ( l ) ,  then there must be at least 
one occurrence for some t 2 2na,  as this event can occur 
only at even time instants. Thus, 

A 

n 

G* C {z: n* 2 na} C U (5: nt(0) = nt(l)}. (14) 

Since the number of sequences with a given Q = q is larger 
than (n  + l)-lexp[nh(q)], [12] where h(q) = - q In q - 
i j  In i j ,  it follows from (14) and the union bound that 

Pe{G*IQ = 41 

t=2na 

A 

= exp [nC(i ,  a)] ,  

where 
if a < 0, 

2a  In 2 + (1 - 2a)+ 
h[(@ - a ) / ( 1 -  2a)] - h(@), if 0 5 Q 5 4. 

~ ( 4 ,  a )  e 
(16) 

{ O' 

Note that for a > ij the set {z: n* > na} is empty because 
n* 5 min{n(O), n(1)). The last step in (15) is obtained by 

The lower limit C/2 is obtained from the fact that n* 5 
min {n(O), n ( l ) }  and hence a = C - ij 5 6. For the upper 
limit, observe that for sequences with 6 > (which means 
a < 0), the event n* > n a  obviously holds. These sequences 
contribute a probability which is exponentially equivalent to 
e-nD(Cl16). Since the exponent on the right-most side of (17) 
never exceeds D((ll6') (set q = 6 = C in (17)), the maximum 
of the previous function can be found for 5 C. From 
standard extremum analysis of this function, we find that for 
0 < C 5 CO, the minimum is obtained at q = 5 and its value 

0 

This interesting phenomenon, that the error exponent is 
optimal for small threshold values A = C - 0 but suboptimal 
for large values of A, is not a consequence of a possible 
looseness of the upper bound. A lower bound on Pr {ne (f*) > 
nC} reveals the same effect. The intuition is that n,(f*) 
is composed from min{n(O), n(1)) and n*. When A is 
small, then D( 5110), which characterizes the large deviations 
behavior of min {n(O), n(l)}, is small as well. Thus, the 
large deviations behavior of n,(f*) is dominated by that of 
min{n(O), n(l)}. On the other hand, if A grows beyond a 
certain point, then the large deviations properties of n* affect 
the performance. 

Another aspect of the large deviations performance of f * 
is its competitive optimality. Specifically, since n,(f*) 5 
min {n(O), n ( l ) }  + n* and for every competing predictor 
n,(f) 2 min{n(O), n( l )}  - n E  except for an exponentially 
small minority of sequences from each type, we see that 
P@(n,(f*) 2 n,(f) + ne} decays exponentially with n for 
every E > 0. An immediate conclusion, by the Borel-Cantelli 
lemma, is that limsupn,,n-'[ne(f*) - n,(f)] 5 0 with 
probability one. 

is D(5110). This completes the proof of Theorem 4. 

APPENDIX 

Proof of Lemma 1:  The predictor f * can be described by 
a trellis diagram (see also [ l ,  Appendix A]) in the following 
manner. Let nt(0) and nt(1) denote current counts at time t 
of zeros and ones, respectively. Define Ct = Int(0) - nt(1)l 
as the state and observe that every increment in Ct, i.e., a 
transition (Ct = k, Ct+l = k + l), k > 0, corresponds to 
a correct prediction of f *  and every decrement is associated 
with an error. The exception is C, = 0 that must be followed 
by an increment (Ct+l = 1) whether or not the prediction 
at time t is correct. Assume, without loss of generality, that 
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n(0) 5 n(1). Clearly, CO = 0 and C, = n(1) - n(0). Let 
I and D denote the number of increments and decrements of 
Ct, respectively. Then, obviously I + D = n and I - D = 
C, = n(1) - n(O), which together imply that I = n(1) 
and D = n(0). Thus, n,(f*) involves errors associated with 
D = n(0) = min{n(O), n(l)} decrements of Ct plus errors 
that may occur when Ct = 0, which happens n* times along 
the sequence. Since a fair coin is flipped whenever Ct = 0, 

0 

A Counterexample f :  Define R = (8: 80 > 1/2}, B = 
(6’: el < 1/2}, Q = (6‘: O0 > l / 2  and d1 > l/2}, U = 
Q n (8: BO < 81) and V = Q - U .  Let d(t)  = (80(t), & ( t ) )  
denote the estimator of 6’ = (6’0, B1) as in (18). The predictor 
f” is defined by &+I = l{e(t) E Q c }  . x;+~ + l{e( t )  E 
V}.xf;\+1{8(t) E V}.xt;: where x:+l is as in (4), and x:;:, 
a, b = 0, 1, is defined as x&; = a when xt = 0 and x:$ = b 
when x t  = 1. In other words, &+I is the same as ~ 2 ; ~  as long 
as 6( t )  falls in the permissible domain Q“. If e(t) happens to 
fall in Q, then the smaller between &(t)  and e 1  ( t )  is assumed 
to be in the wrong half interval and the predictor is “corrected” 
accordingly. Let 8 = (80, 6’1) satisfy 0 < 80 < 1/2 and 
0 < 81 < 1/2. We next compare the performance of f to that 
o f f *  at (6’0, 6‘1) and its two reflections ($0, 81) and (80, $1) 

and show that f” outperforms f *  at these three points. For 8 in 
the lower left quarter of 0, this result is obvious by making the 
two following observations. First, r t ( f ,  8) depends of f only 
through the probability that f does not agree with the optimal 
predictor for that quarter (see (6), (7)), namely, the probability 
that &+I # 0. Secondly, {&+I # 0} C {x:+~ # O}. For 
(80, 3,) in the upper left quarter of 0, we have from (6), 

~ t ( f ” ,  6’0, $1) = (1 - 280) * Poogl {xt = 0, e(t) E R - U }  

then on the average n*/2 additional errors appear. 

+(1 - 281) * POoel{xt = 1, e(t) E B U V } ,  (A.l) 

while 

T t ( f * ,  80,81) = (1 - 280) . Po0g1{xt = 0, e ( t )  E R}  
+(1 - 2/31) . Po,;, { ~ t  = 1, e(t)  E B}.  (A.2) 

The difference is 

T t ( f * ,  80,e l )  - 4, 6’0, 31) 
= (1 - 280) PooZjo{X~ = 0, i ( t )  E U }  

- (1 - 281) ’ Poo~ ,{x t  = 1, e ( t )  E V )  c Poo& (21,. . . , xt-1) 

. P0,g1 (.t = olxt-1) 

- (1 - 281) . POog,{B(t) E V }  

2 (1 - 28O)Bl *Po0g$(t)  E U )  

- (1 - 281) * Pe,gl { e @ )  E V } .  

> (1 - 280) * 
x: B^(t)EU 

(A.3) 

The large deviations theory for discrete Markov sources im- 
plies that Poogl { 8 ( t )  E V }  is exponentially negligible relative 
to Poo8,{8(t) E U } ,  and hence that (A.3) is positive when t 
is sufficiently large. A similar consideration holds for ($0, 01) 
due to symmetry. 

Proofof(1l): The idea is to observe that at each state 
xt = x both the next outcome and the best prediction strategy 
behave like these of a Bernoulli process with a parameter 8,. 
Any predictor (go, 91) can be improved if go is replaced by 
the optimal strategy for state “ 0 ,  i.e., &+I = l(80 2 1/2} 
while at state xt = 1 the strategy g1 remains unchanged. A 
straightforward application of Theorem la) to state “1” implies 
that for every value of 80 and for half of the values of 01, i.e., 
for half the sources, nR,(f, 6’) 2 ci(0) = 0.5 PB{Q = 
1, el(t) = 1/2}. Interchanging the roles of state “0” and 
state “1” in the previous argument, we conclude similarly 
that for every 81 and for half the values of 80, nRn(f, 8) 2 
.:(e) = 0.5cE1 Po{xt = 0, &(t)  = l/2}. Thus, when the 
right-hand side is replaced by E l ( B )  = min{c:(B), e:(@)},  the 
inequality holds simultaneously for at least 3/4 of the sources 
in 0. 0 

4 
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